
Subclasses, Superclasses, and Inheritance

To recap what you've seen before, classes can be derived from other classes. The derived

class (the class that is derived from another class) is called a subclass. The class from

which it's derived is called the superclass. The following figure illustrates these two types

of classes:

In fact, in Java, all classes must be derived from some class. Which leads to the question

"Where does it all begin?" The top-most class, the class from which all other classes are

derived, is the Object class defined in java.lang. Object is the root of a hierarchy of

classes, as illustrated in the following figure.

The subclass inherits state and behavior in the form of variables and methods from its

superclass. The subclass can use just the items inherited from its superclass as is, or the

subclass can modify or override it. So, as you drop down in the hierarchy, the classes

become more and more specialized:

Definition: A subclass is a class that derives from another class. A subclass inherits state

and behavior from all of its ancestors. The term superclass refers to a class's direct

ancestor as well as all of its ascendant classes.

What Is Inheritance?

Generally speaking, objects are defined in terms of classes. You know a lot about an

object by knowing its class. Even if you don't know what a penny-farthing is, if I told you

it was a bicycle, you would know that it had two wheels, handle bars, and pedals.

Object-oriented systems take this a step further and allow classes to be defined in terms

of other classes. For example, mountain bikes, racing bikes, and tandems are all different

kinds of bicycles. In object-oriented terminology, mountain bikes, racing bikes, and

tandems are all subclasses of the bicycle class. Similarly, the bicycle class is the

superclass of mountain bikes, racing bikes, and tandems.

Each subclass inherits state (in the form of variable declarations) from the superclass.

Mountain bikes, racing bikes, and tandems share some states: cadence, speed, and the

like. Also, each subclass inherits methods from the superclass. Mountain bikes, racing

bikes, and tandems share some behaviors: braking and changing pedaling speed, for

example.

However, subclasses are not limited to the state and behaviors provided to them by their

superclass. What would be the point in that? Subclasses can add variables and methods to

the ones they inherit from the superclass. Tandem bicycles have two seats and two sets of

handle bars; some mountain bikes have an extra set of gears with a lower gear ratio.

Subclasses can also override inherited methods and provide specialized implementations

for those methods. For example, if you had a mountain bike with an extra set of gears,

you would override the "change gears" method so that the rider could actually use those

new gears.

You are not limited to just one layer of inheritance. The inheritance tree, or class

hierarchy, can be as deep as needed. Methods and variables are inherited down through

the levels. In general, the further down in the hierarchy a class appears, the more

specialized its behavior.

The Benefits of Inheritance

 Subclasses provide specialized behaviors from the basis of common

elements provided by the superclass. Through the use of inheritance,

programmers can reuse the code in the superclass many times.

 Programmers can implement superclasses called abstract classes that

define "generic" behaviors. The abstract superclass defines and may

partially implement the behavior but much of the class is undefined and

unimplemented. Other programmers fill in the details with specialized

subclasses.

Creating Subclasses

To create a subclass of another class use the extends clause in your class declaration.

(The Class Declaration explains all of the components of a class declaration in detail.) As

a subclass, your class inherits member variables and methods from its superclass. Your

class can choose to hide variables or override methods inherited from its superclass.

Writing Final Classes and Methods

Sometimes, for security or design reasons, you want to prevent your class from being

subclassed. Or, you may just wish to prevent certain methods within your class from

being overriden. In Java, you can achieve either of these goals by marking the class or the

method as final.

Writing Abstract Classes and Methods

On the other hand, some classes are written for the sole purpose of being subclassed (and

are not intended to ever be instantiated). These classes are called abstract classes and

often contain abstract methods.

The Object Class

All objects in the Java environment inherit either directly or indirectly from the Object

class. This section talks about the interesting methods in Object--methods that you may

wish to invoke or override.

Creating Subclasses

You declare that a class is the subclass of another class within the Class Declaration. For

example, suppose that you wanted to create a subclass named SubClass of another class

named SuperClass. You would write:

class SubClass extends SuperClass {

 . . .

}

This declares that SubClass is the subclass of the Superclass class. It also implicitly declares

that SuperClass is the superclass of SubClass. A subclass also inherits variables and methods

from its superclass's superclass, and so on up the inheritance tree. To simplify our discussion,

when this tutorial refers to a class's superclass it means the class's direct ancestor as well as all

of its ascendant classes.

A Java class can have only one direct superclass. Java does not support multiple

inheritance.

Creating a subclass can be as simple as including the extends clause in your class

declaration. However, you usually have to make other provisions in your code when

subclassing a class, such as overriding methods or providing implementation for abstract

methods.

What Member Variables Does a Subclass Inherit?

Rule: A subclass inherits all of the member variables within its superclass that are accessible to

that subclass (unless the member variable is hidden by the subclass).

The following list itemizes the member variables that are inherited by a subclass:

 Subclasses inherit those member variables declared as public or protected.
 Subclasses inherit those member variables declared with no access specifier as long as

the subclass is in the same package as the superclass.
 Subclasses don't inherit a superclass's member variable if the subclass declares a

member variable using the same name. The subclass's member variable is said to hide
the member variable in the superclass.

 Subclasses don't inherit the superclass's private member variables.

Hiding Member Variables

As mentioned in the previous section, member variables defined in the subclass hide member

variables of the same name in the superclass.

While this feature of the Java language is powerful and convenient, it can be a fruitful

source of errors: hiding a member variable can be done deliberately or by accident. So,

when naming your member variables be careful to only hide those member variables that

you actually wish to hide.

One interesting feature of Java member variables is that a class can access a hidden

member variable through its superclass. Consider this superclass and subclass pair:

class Super {

 Number aNumber;

}

class Sub extends Super {

 Float aNumber;

}

The aNumber variable in Sub hides aNumber in Super. But you can access aNumber from the

superclass with:

super.aNumber

super is a Java language keyword that allows a method to refer to hidden variables and

overriden methods of the superclass.

What Methods Does a Subclass Inherit?

The rule that specifies which methods get inherited by a subclass is similar to that for member

variables.

Rule: A subclass inherits all of the methods within its superclass that are accessible to that

subclass (unless the method is overriden by the subclass).

The following list itemizes the methods that are inherited by a subclass:

 Subclasses inherit those methods declared as public or protected.
 Subclasses inherit those superclass methods declared with no access specifier as long as

the subclass is in the same package as the superclass.
 Subclasses don't inherit a superclass's method if the subclass declares a method using

the same name. The method in the subclass is said to override the one in the superclass.
 Subclasses don't inherit the superclass's private methods.

A subclass can either completely override the implementation for an inherited method, or the

subclass can enhance the method by adding functionality to it.

Overriding Methods

The ability of a subclass to override a method in its superclass allows a class to inherit from a

superclass whose behavior is "close enough" and then supplement or modify the behavior of

that superclass.

Writing Final Classes and Methods

Final Classes

You can declare that your class is final; that is, that your class cannot be subclassed. There are

(at least) two reasons why you might want to do this: security reasons and design reasons.

Security: One mechanism that hackers use to subvert systems is to create subclasses of a

class and then substitute their class for the original. The subclass looks and feels like the

original class but does vastly different things possibly causing damage or getting into

private information. To prevent this kind of subversion, you can declare your class to be

final and prevent any subclasses from being created. The String class in the java.lang

package is a final class for just this reason. The String class is so vital to the operation

of the compiler and the interpreter that the Java system must guarantee that whenever a

method or object uses a String they get exactly a java.lang.String and not some

other string. This ensures that all strings have no strange, inconsistent, undesirable, or

unpredictable properties.

If you try to compile a subclass of a final class, the compiler will print an error message

and refuse to compile your program. In addition, the bytecode verifier ensures that the

subversion is not taking place at the bytecode level by checking to make sure that a class

is not a subclass of a final class.

Design: Another reason you may wish to declare a class as final are for object-oriented

design reasons. You may think that your class is "perfect" or that, conceptually, your

class should have no subclasses.

To specify that your class is a final class, use the keyword final before the class

keyword in your class declaration. For example, if you wanted to declare your (perfect)

ChessAlgorithm class as final, its declaration would look like this:

final class ChessAlgorithm {

 . . .

}

Any subsequent attempts to subclass ChessAlgorithm will result in a compiler error such as

the following:

Chess.java:6: Can't subclass final classes: class ChessAlgorithm

class BetterChessAlgorithm extends ChessAlgorithm {

 ^

1 error

Final Methods

If creating a final class seems heavy handed for your needs, and you really just want to protect

some of your class's methods from being overriden, you can use the final keyword in a

method declaration to indicate to the compiler that the method cannot be overridden by

subclasses.

You might wish to make a method final if the method has an implementation that should

not be changed and is critical to the consistent state of the object. For example, instead of

making your ChessAlgorithm class final, you might just want to make the nextMove

method final:

class ChessAlgorithm {

 . . .

 final void nextMove(ChessPiece pieceMoved, BoardLocation

newLocation) {

 }

 . . .

}

Writing Abstract Classes and Methods

Abstract Classes

Sometimes, a class that you define represents an abstract concept and as such, should not be

instantiated. Take, for example, food in the real world. Have you ever seen an instance of food?

No. What you see instead are instances of carrot, apple, and (my favorite), chocolate. Food

represents the abstract concept of things that we can eat. It doesn't make sense for an instance

of food to exist.

Similarly in object-oriented programming, you may want to model abstract concepts but

you don't want to be able to create an instance of it. For example, the Number class in the

java.lang package represents the abstract concept of numbers. It makes sense to model

numbers in a program, but it doesn't make sense to create a generic number object.

Instead, the Number class makes sense only as a superclass to classes like Integer and

Float which implement specific kinds of numbers. Classes such as Number, which

implement abstract concepts and should not be instantiated, are called abstract classes.

An abstract class is a class that can only be subclassed--it cannot be instantiated.

To declare that your class is an abstract class, use the keyword abstract before the

class keyword in your class declaration:

abstract class Number {

 . . .

}

If you attempt to instantiate an abstract class, the compiler will display an error similar to the

following and refuse to compile your program:

AbstractTest.java:6: class AbstractTest is an abstract class. It can't

be instantiated.

 new AbstractTest();

 ^

1 error

Abstract Methods

An abstract class may contain abstract methods, that is, methods with no implementation. In

this way, an abstract class can define a complete programming interface, thereby providing its

subclasses with the method declarations for all of the methods necessary to implement that

programming interface. However, the abstract class can leave some or all of the implementation

details of those methods up to its subclasses.

Let's look at an example of when you might want to create an abstract class with an

abstract method in it. In an object-oriented drawing application, you can draw circles,

rectangles, lines, Bezier curvess, and so on. Each of these graphic objects share certain

states (position, bounding box) and behavior (move, resize, draw). You can take

advantage of these similarities and declare them all to inherit from the same parent

object--GraphicObject.

However, the graphic objects are also substantially different in many ways: drawing a

circle is quite different from drawing a rectangle. The graphics objects cannot share these

types of states or behavior. On the other hand, all GraphicObjects must know how to

draw themselves; they just differ in how they are drawn. This is a perfect situation for an

abstract superclass.

First you would declare an abstract class, GraphicObject, to provide member variables

and methods that were wholly shared by all subclasses, such as the current position and

the moveTo method. GraphicObject also declares abstract methods for methods, such as

draw, that need to be implemented by all subclasses, but are implemented in entirely

different ways (no default implementation in the superclass makes sense). The

GraphicObject class would look something like this:

abstract class GraphicObject {

 int x, y;

 . . .

 void moveTo(int newX, int newY) {

 . . .

 }

 abstract void draw();

}

Each non-abstract subclass of GraphicObject, such as Circle and Rectangle, would have

to provide an implementation for the draw method.

class Circle extends GraphicObject {

 void draw() {

 . . .

 }

}

class Rectangle extends GraphicObject {

 void draw() {

 . . .

 }

}

An abstract class is not required to have an abstract method in it. But any class that has an

abstract method in it or that does not provide an implementation for any abstract methods

declared in its superclasses must be declared as an abstract class.

The Object Class

The Object class sits at the top of the class hierarchy tree in the Java development

environment. Every class in the Java system is a descendent (direct or indirect) of the

Object class. The Object class defines the basic state and behavior that all objects must

have, such as the ability to compare oneself to another object, to convert to a string, to

wait on a condition variable, to notify other objects that a condition variable has changed,

and to return the object's class.

The equals Method

Use the equals to compare two objects for equality. This method returns true if the

objects are equal, false otherwise. Note that equality does not mean that the objects are

the same object. Consider this code that tests two Integers, one and anotherOne, for

equality:
Integer one = new Integer(1), anotherOne = new Integer(1);

if (one.equals(anotherOne))

 System.out.println("objects are equal");

This code will display objects are equal even though one and anotherOne reference

two different, distinct objects. They are considered equal because they contain the same

integer value.

Your classes should override this method to provide an appropriate equality test. Your

equals method should compare the contents of the objects to see if they are functionally

equal and return true if they are.

The getClass Method

The getClass method is a final method (cannot be overridden) that returns a runtime

representation of the class of this object. This method returns a Class object. You can

query the Class object for a variety of information about the class, such as its name, its

superclass, and the names of the interfaces that it implements. The following method gets

and displays the class name of an object:
void PrintClassName(Object obj) {

 System.out.println("The Object's class is " +

obj.getClass().getName());

}

One handy use of the getClass method is to create a new instance of a class without

knowing what the class is at compile time. This sample method creates a new instance of

the same class as obj which can be any class that inherits from Object (which means that

it could be any class):
Object createNewInstanceOf(Object obj) {

 return obj.getClass().newInstance();

}

The toString Method

Object's toString method returns a String representation of the object. You can use

toString to display an object. For example, you could display a String representation

of the current Thread like this:
System.out.println(Thread.currentThread().toString());

The String representation for an object is entirely dependent on the object. The String

representation of an Integer object is the integer value displayed as text. The String

representation of a Thread object contains various attributes about the thread, such as its

name and priority. For example, the previous of code above display the following:
Thread[main,5,main]

The toString method is very useful for debugging and it would behoove you to override

this method in all your classes.

Object Methods Covered In Other Lessons or Sections

The Object class provides a method, finalize that cleans up an object before its

garbage collected. This method's role during garbage collection is discussed in this lesson

in Cleaning Up Unused Objects. Also, Writing a finalize Method shows you how to write

override the finalize method to handle the finalization needs for you classes.

The Object class also provides five methods that are critical when writing multithreaded

Java programs:

 notify
 notifyAll

 wait (three versions)

These methods help you ensure that your threads are synchronized and are covered in

Threads of Control. Take particular note of the page titled Synchronizing Threads.

